A novel approach to investigate biofilm accumulation and bacterial transport in porous matrices.
نویسندگان
چکیده
Knowledge of bacterial transport through, and biofilm growth in, porous media is vitally important in numerous natural and engineered environments. Despite this, porous media systems are generally oversimplified and the local complexity of cell transport, biofilm formation and the effect of biofilm accumulation on flow patterns is lost. In this study, cells of the sulphate-reducing bacterium, Desulfovibrio sp. EX265, accumulated primarily on the leading faces of obstructions and developed into biofilm, which grew to narrow and block pore throats (at a rate of 12 micro m h(-1) in one instance). This pore blocking corresponded to a decrease in permeability from 9.9 to 4.9 Darcy. Biofilm processes were observed in detail and quantitative data were used to describe the rate of biofilm accumulation temporally and spatially. Accumulation in the inlet zone of the micromodel was 10% higher than in the outlet zone and a mean biofilm height of 28.4 micro m was measured in a micromodel with an average pore height of 34.9 microm. Backflow (flow reversal) of fluid was implemented on micromodels blocked with biofilm growth. Although biofilm surface area cover did immediately decrease (approximately 5%), the biofilm quickly re-established and permeability was not significantly affected (9.4 Darcy). These results demonstrate that the glass micromodel used here is an effective tool for in situ analysis and quantification of bacteria in porous media.
منابع مشابه
In vitro anti-biofilm activity of Quercus brantii subsp. persica on human pathogenic bacteria
Background and objectives: Quercus brantii subsp. persica is used in folk medicine to treat infections in Iran. There is not available report on the anti-biofilm activity of Quercus brantii subsp. persica. The aim of the present study was to investigate the effects of Quercus brantii subsp. persica against...
متن کاملBiomass evolution in porous media and its effects on permeability under starvation conditions.
The purpose of this study was to understand bacteria profile modification and its applications in subsurface biological operations such as biobarrier formation, in situ bioremediation, and microbial-enhanced oil recovery. Biomass accumulation and evolution in porous media were investigated both experimentally and theoretically. To study both nutrient-rich and carbon-source-depleted conditions, ...
متن کاملComparison of Congo Red Agar methods and tube turbidity in biofilm formation in Klebsiella pneumoniae isolates from cases of urinary tract infections in Samen Al-Aeme Hospital Bojnourd
Introduction Biofilm can be called a bacterial community that often forms on living or non-living surfaces and is common in natural, industrial, and hospital environments. Klebsiella pneumoniae as a pathogen has the potential to produce biofilms. Understanding biofilm formation in biofilm-forming bacteria is important. The aim of this study was to investigate the biofilm formation in isolates ...
متن کاملAccurate Numerical Simulation of Biobarrier Formation in Porous Media
Biofilm-forming microbes have complex effects on the flow properties of natural porous media. Subsurface biofilms have the potential for biotransformation of organic contaminants to less harmful forms, and also to form biobarriers to inhibit contaminant migration in groundwater. To describe the population distribution and movement of bacteria in porous media, we consider the convection-dispersi...
متن کاملINHIBITORY EFFECT OF STEVIA AND ROSA EXTRACTS AGAINST BACTERIAL QUORUM SENSING
Background & Aims: Quorum Sensing is a mechanism by which orchestrate the expression of many genes in bacteria. Therefore, any interference with the system will inhibit bacterial infections. The principal purpose of the research was to evaluate the potential of anti-quorum sensing of Rosa damascena and Stevia rebaudiana against Staphylococcus aureus. Materials & Methods: Ten isolates of Staphy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2004